Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Discov ; 8(1): 114, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2087192

ABSTRACT

SARS-CoV-2 vaccine booster dose can induce a robust humoral immune response, however, its cellular mechanisms remain elusive. Here, we investigated the durability of antibody responses and single-cell immune profiles following booster dose immunization, longitudinally over 6 months, in recipients of a homologous BBIBP-CorV/BBIBP-CorV or a heterologous BBIBP-CorV/ZF2001 regimen. The production of neutralizing antibodies was dramatically enhanced by both booster regimens, and the antibodies could last at least six months. The heterologous booster induced a faster and more robust plasmablast response, characterized by activation of plasma cells than the homologous booster. The response was attributed to recall of memory B cells and the de novo activation of B cells. Expanded B cell clones upon booster dose vaccination could persist for months, and their B cell receptors displayed accumulated mutations. The production of antibody was positively correlated with antigen presentation by conventional dendritic cells (cDCs), which provides support for B cell maturation through activation and development of follicular helper T (Tfh) cells. The proper activation of cDC/Tfh/B cells was likely fueled by active energy metabolism, and glutaminolysis might also play a general role in promoting humoral immunity. Our study unveils the cellular mechanisms of booster-induced memory/adaptive humoral immunity and suggests potential strategies to optimize vaccine efficacy and durability in future iterations.

2.
BMC Infect Dis ; 22(1): 632, 2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1935459

ABSTRACT

BACKGROUND: The outbreak of SARS-CoV-2 at the end of 2019 sounded the alarm for early inspection on acute respiratory infection (ARI). However, diagnosis pathway of ARI has still not reached a consensus and its impact on prognosis needs to be further explored. METHODS: ESAR is a multicenter, open-label, randomized controlled, non-inferiority clinical trial on evaluating the diagnosis performance and its impact on prognosis of ARI between mNGS and multiplex PCR. Enrolled patients will be divided into two groups with a ratio of 1:1. Group I will be directly tested by mNGS. Group II will firstly receive multiplex PCR, then mNGS in patients with severe infection if multiplex PCR is negative or inconsistent with clinical manifestations. All patients will be followed up every 7 days for 28 days. The primary endpoint is time to initiate targeted treatment. Secondary endpoints include incidence of significant events (oxygen inhalation, mechanical ventilation, etc.), clinical remission rate, and hospitalization length. A total of 440 participants will be enrolled in both groups. DISCUSSION: ESAR compares the efficacy of different diagnostic strategies and their impact on treatment outcomes in ARI, which is of great significance to make precise diagnosis, balance clinical resources and demands, and ultimately optimize clinical diagnosis pathways and treatment strategies. Trial registration Clinicaltrial.gov, NCT04955756, Registered on July 9th 2021.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Hospitalization , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial , Treatment Outcome
3.
Emerg Microbes Infect ; 11(1): 639-647, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1624421

ABSTRACT

A COVID-19 booster vaccination is being comprehensively evaluated globally due to the emerging concern of reduced protection rate of previous vaccination and circulating Variants of Concern (VOC). But the safety and immunogenicity of homologous BBIBP-CorV boosting vaccination are yet to be thoroughly evaluated. We conducted this prospective, open-label study in Huashan Hospital using a third 6.5U BBIBP-CorV administered at an interval of 4-8 months following the previous two doses in healthy adults. Safety, anti-RBD response and neutralizing titers against SARS-CoV-2 and VOCs were examined. Sixty-three and forty participants entered the booster and the control group, respectively. A significant increase in IFN-γ SFU per million PBMCs was observed on day 14 against N peptide (20 vs. 5, P < 0.001). On day 14, pVNT GMTs increased over 15 folds of the baseline levels against prototype to reach 404.54 titers and over 9-13 folds against 4 VOCs and continuously increased by day 28. sVNT GMTs increased 112.51 and 127.45 folds by days 14 and 28 compared to the baseline level. Median anti-RBD antibody and IgG level significantly increased from 11.12 to 2607.50 BAU/ml and 4.07 to 619.20 BAU/ml on day 14. On day 14, females showed a significantly higher cell-mediated immune response against S1 peptide. The 7-8 months interval group had a higher humoral response than the 4-6 months interval group. No severe adverse event was reported. A third homologous BBIBP-CorV boosting vaccination was safe and highly immunogenic for healthy adults and broadened participants' immunity against VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , Female , Humans , Immunogenicity, Vaccine , Prospective Studies , Vaccination
5.
Emerg Microbes Infect ; 11(1): 337-343, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1585241

ABSTRACT

ABSTRACTThe emerging new VOC B.1.1.529 (Omicron) variant has raised serious concerns due to multiple mutations, reported significant immune escape, and unprecedented rapid spreading speed. Currently, studies describing the neutralization ability of different homologous and heterologous booster vaccination against Omicron are still lacking. In this study, we explored the immunogenicity of COVID-19 breakthrough patients, BBIBP-CorV homologous booster group and BBIBP-CorV/ZF2001 heterologous booster group against SARS-CoV-2 pseudotypes corresponding to the prototype, Beta, Delta, and the emergent Omicron variant.Notably, at 14 days post two-dose inactivated vaccines, pVNT titre increased to 67.4 GMTs against prototype, 8.85 against Beta and 35.07 against Delta, while neutralization activity against Omicron was below the lower limit of quantitation in 80% of the samples. At day 14 post BBIBP-CorV homologous booster vaccination, GMTs of pVNT significantly increased to 285.6, 215.7, 250.8, 48.73 against prototype, Beta, Delta, and Omicron, while at day 14 post ZF2001 heterologous booster vaccination, GMTs of pVNT significantly increased to 1436.00, 789.6, 1501.00, 95.86, respectively. Post booster vaccination, 100% samples showed positive neutralization activity against Omicron, albeit illustrated a significant reduction (5.86- to 14.98-fold) of pVNT against Omicron compared to prototype at 14 days after the homologous or heterologous vaccine boosters.Overall, our study demonstrates that vaccine-induced immune protection might more likely be escaped by Omicron compared to prototypes and other VOCs. After two doses of inactivated whole-virion vaccines as the "priming" shot, a third heterologous protein subunit vaccine and a homologous inactivated vaccine booster could improve neutralization against Omicron.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Humans , Immune Sera/immunology , Immunization, Secondary , Immunogenicity, Vaccine , Middle Aged , SARS-CoV-2/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL